Electronic Supplementary Material

PSMA-based $[^{18}\text{F}]$DCFPyL PET/CT is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer

Journal: Molecular Imaging and Biology

Authors: Steven P. Rowe1, Katarzyna J. Macura1, Esther Mena1, Amanda L. Blackford1, Rosa Nadal2, Emmanuel S. Antonarakis2, Mario Eisenberger2, Michael Carducci2, Hong Fan1, Robert F. Dannals1, Ying Chen1, Ronnie C. Mease1, Zsolt Szabo1, Martin G. Pomper1, and Steve Y. Cho1,3

Author Affiliations: 1The Russell H. Morgan Department of Radiology and Radiological Science and 2Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA. 3Present address: Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

Corresponding Author:
Steve Y. Cho, M.D.
1111 Highland Avenue, WIMR 7139
Madison, WI 53705
Office: (608) 263-5048
Fax: (608) 265-7390
Email: scho@uwhealth.org
Supplementary Fig. 1. Chemical structure of 18FDCFPyL, the PSMA-targeted PET radiotracer evaluated in this study.
Supplementary Fig. 2. Box plot of average normal organ SUV$_{\text{mean}}$ at the PET4 and PET5 time points (~60 and at 120 minutes post injection, respectively) for blood pool, liver, vertebral body and skeletal muscle.
Supplementary Fig. 3. Coronal MIP images comparing PET scans imaged with DCFPyL (a) and 18F-DCFBC (b), our first generation PSMA-targeted PET radiotracer. Both patients had multiple bone and lymph node lesions presumed to be metastatic prostate cancer. DCFPyL is notable for markedly less blood pool activity with relatively higher uptake within suspected metastatic foci.