Electronic Supplementary Material

Pre-clinical Evaluation of a Cyanine Based SPECT Probe for Multimodal Tumor Necrosis Imaging

Journal: Molecular Imaging and Biology

Marieke A. Stammes¹,², Vicky T. Knol-Blankevoort¹,², Luis J. Cruz³, Hans R.I.J. Feitsma³, Laura Mezzanotte³,⁴, Robert A. Cordfunke⁵, Riccardo Sinisi⁶, Elena A. Dubikovskaya⁶, Azusa Maeda⁷, Ralph S DaCosta⁷, Katja Bierau⁸, Alan Chan², Eric L. Kajzel¹, Thomas J.A. Snoeks¹, Ermond R. van Beek¹, Clemens W.G.M. Löwik ¹,⁴.

1) Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
2) Percuros BV, Leiden, The Netherlands
3) Department of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
4) Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
5) Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
6) Institute of chemical sciences and engineering (ISIC), École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
7) Division of Biophysics and Bioimaging, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
8) Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands

Corresponding author: Clemens W.G.M. Löwik, Current address: Erasmus Medical Center, Dept. Radiology, Building-room: Na-2503, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands. +31 (0)10 7030797.
c.lowik@erasusmc.nl
Supplementary Figure 1: Structural characteristics and *in vitro* necrosis avid properties of HQ4 vs HQ5.

a) Chemical and structural characteristics of the carboxylated cyanine dyes HQ4 and HQ5.

b) *In vitro* necrosis targeting properties of HQ4 and HQ5 utilizing the dry ice assay. Fluorescent signal intensity was obtained from the area of dead cells in the centre of a culture well after incubation with different concentrations of HQ4 or HQ5 (1-100 nM) and is subtracted by the background signal from the area of the living cells.
Reversed-phase chromatography showed a clear peak indicating the high grade of purity (98%) of this conjugate. Mass spectrometric analyses of HQ4-DTPA further showed the expected molecular weight (calc.: 1331.59 for $C_{66}H_{90}N_{8}O_{17}S_{2}$ and MALDI-TOF found 1332.4 [M+1]+ 1354.6 [M+Na]), indicating the high grade of purity of this conjugate.
Confluent cultures of 4T1 cells were incubated for 24 hr with various concentrations HQ4, HQ4-DTPA, HQ5 or the natural anti-cancer compound Gambogic Acid (GA). Relative cell viability (%) was expressed as a percentage relative to the untreated control. HQ4, HQ4-DTPA and HQ5 did not affect cell viability, whereas, GA induced cell death with an IC50 of around 6µM.
Supplementary Figure 4: Biodistribution of 111InDTPA.

a) Biodistribution of the free chelate 111InDTPA in 4T1 tumor bearing mice. 24h after probe injection (10 µg, 30-35 MBq), mice (n=4) were sacrificed and the organs, body fluids and tumors were dissected, weighted and measured for radioactivity in a gamma counter. At each time point, the amount of radioactivity in each organ and tumor is expressed as percentage of the injected dose divided by the weight (%ID/w).

b) Total amount of remaining 111InDTPA-HQ4 and 111InDTPA in the whole mouse body (% of ID) at the indicated time points 6 to 72h after probe injection.