Produkteempfehlungssysteme mit minimalem Konsumentenaufwand und hoher Genauigkeit – Ein neuer Ansatz mit gewichteter Pareto-Front

Jella Pfeiffer, Michael Scholz

WIRTSCHAFTSINFORMATIK (2013) 55 (6)

Anhang (verfügbar online über http://springerlink.com)
Anhang

Algorithm CONJ

\{ Compare attribute levels with aspiration level \(asp \) \}
\{ Eliminate alternative if aspiration level is not met. \}
for \(p = 1 \) to \(n \) do
 for \(i = 1 \) to \(m \) do
 READ \(x_{ip} \)
 if \(\text{COMPARE} \ asp(x_{ip}) == 1 \) then \(\{ mn \} \)
 ELIMINATE \(alt_p \) \(\{ n-1 \} \)
 end if
end for
end for

Abb. A EIP-Kostenmodell für die CONJ-Strategie. Es gilt \(asp(a_{ij}) = 1 \) falls die Attributausprägung \(x_{ij} \) nicht die Attributrestriktion erfüllt. Die Summe der EIPs hängt von der Anzahl an Attributen ab, die betrachtet werden müssen, um ein Produkt auszuschließen. Die Kostenblöcke beziehen sich auf das Worst-Case-Szenario, in welchem ein Konsument alle Attribute betrachten muss, um ein Produkt auszuschließen.

Algorithm EBA

while at least two alternatives are left do
 \{ Find attribute with next highest attribute weight. \}
 READ first \(attr_c \) which is left
 \{ \(n-1 \) \}
 while not all other \(attr_i \) considered yet do
 \{ \(0.5(m^2-m) \) \}
 \begin{align*}
 & \text{READ next } attr_i \text{ which is left} \\
 & \text{COMPARE } w_c \text{ with } w_i \text{ and update } attr_c \text{ if } w_c < w_i \\
 \end{align*}
 end while
\{ Compare attribute levels with aspiration level \(asp_c \) \}
\{ Eliminate alternative if aspiration is not met. \}
for \(p = 1 \) to \(n \) do
 if \(alt_p \) not yet eliminated then
 \{ \(m \(n-1 \) \) \}
 READ \(x_{cp} \)
 if \(\text{COMPARE} \ asp(x_{cp}) == 1 \) then \(\{ n-1 \} \)
 ELIMINATE \(alt_p \)
 end if
 end if
end for
end while

Algorithm LEX

while at least two alternatives are left do
 {Find attribute with next highest attribute weight}
 READ first $attr_{ci}$ which is left
 while not all other $attr_i$ considered yet do
 READ next $attr_i$ which is left
 COMPARE w_{ci} with w_i and update $attr_{ci}$ if $w_{ci} < w_i$
 end while
 {Check which alternative is best on the current attribute $attr_c$.}
 READ first x_{cip} which is left
 while not all other alt_p considered yet do
 READ next x_{cip} which is left
 COMPARE $u(x_{cip})$ with $u(x_{cip})$
 ELIMINATE alt with strictly lower attribute level utility
 end while
end while

Tab. A Durchschnittliche Anzahl betrachteter Produkte für unterschiedliche Entscheidungsstrategien und Stopregeln. Standardabweichungen sind in Klammern angegeben.

<table>
<thead>
<tr>
<th>System</th>
<th>Strategie</th>
<th>1-Bounce-Regel</th>
<th>2-Bounce-Regel</th>
<th>3-Bounce-Regel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zufalls-</td>
<td>EBA</td>
<td>2,20 (0,41)</td>
<td>3,57 (1,00)</td>
<td>5,02 (1,59)</td>
</tr>
<tr>
<td>sortierung</td>
<td>CONJ</td>
<td>13,27 (27,95)</td>
<td>14,92 (29,31)</td>
<td>17,15 (30,04)</td>
</tr>
<tr>
<td></td>
<td>LEX</td>
<td>2,81 (1,16)</td>
<td>5,09 (2,03)</td>
<td>7,61 (2,77)</td>
</tr>
<tr>
<td></td>
<td>WADD</td>
<td>2,74 (0,87)</td>
<td>4,94 (1,92)</td>
<td>7,68 (3,17)</td>
</tr>
<tr>
<td></td>
<td>Durchschnitt</td>
<td>5,04 (14,14)</td>
<td>6,92 (14,79)</td>
<td>14,91 (14,92)</td>
</tr>
<tr>
<td>Preissortierung</td>
<td>EBA</td>
<td>2,00 (0,00)</td>
<td>3,15 (0,57)</td>
<td>4,53 (1,10)</td>
</tr>
<tr>
<td></td>
<td>CONJ</td>
<td>30,99 (34,22)</td>
<td>32,07 (34,22)</td>
<td>33,20 (34,14)</td>
</tr>
<tr>
<td></td>
<td>LEX</td>
<td>2,25 (0,80)</td>
<td>5,35 (3,19)</td>
<td>7,53 (4,68)</td>
</tr>
<tr>
<td></td>
<td>WADD</td>
<td>2,00 (0,00)</td>
<td>4,99 (3,90)</td>
<td>17,32 (3,99)</td>
</tr>
<tr>
<td></td>
<td>Durchschnitt</td>
<td>8,73 (20,41)</td>
<td>10,83 (20,26)</td>
<td>15,13 (19,94)</td>
</tr>
<tr>
<td>Wichtigkeits-sortierung</td>
<td>EBA</td>
<td>CONJ</td>
<td>LEX</td>
<td>WADD</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>2,05 (0,24)</td>
<td>19,42 (32,67)</td>
<td>2,25 (0,62)</td>
<td>2,15 (0,48)</td>
</tr>
<tr>
<td></td>
<td>3,34 (0,79)</td>
<td>20,48 (32,58)</td>
<td>3,58 (1,11)</td>
<td>4,75 (1,87)</td>
</tr>
<tr>
<td></td>
<td>4,43 (0,98)</td>
<td>21,54 (32,52)</td>
<td>5,07 (1,98)</td>
<td>9,57 (5,63)</td>
</tr>
<tr>
<td></td>
<td>2,04 (0,26)</td>
<td>9,27 (18,57)</td>
<td>2,57 (1,28)</td>
<td>2,53 (0,63)</td>
</tr>
<tr>
<td></td>
<td>3,09 (0,42)</td>
<td>10,27 (18,57)</td>
<td>4,71 (2,39)</td>
<td>4,31 (1,32)</td>
</tr>
<tr>
<td></td>
<td>4,30 (0,96)</td>
<td>11,30 (26,51)</td>
<td>6,79 (3,08)</td>
<td>11,11 (2,15)</td>
</tr>
<tr>
<td></td>
<td>3,15 (0,66)</td>
<td>3,89 (2,39)</td>
<td>5,03 (1,24)</td>
<td>7,22 (1,28)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pareto-Front</th>
<th>EBA</th>
<th>CONJ</th>
<th>LEX</th>
<th>WADD</th>
<th>Durchschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,14 (0,40)</td>
<td>10,43 (18,57)</td>
<td>3,25 (1,00)</td>
<td>4,35 (1,63)</td>
<td>4,89 (9,48)</td>
</tr>
<tr>
<td></td>
<td>3,44 (0,84)</td>
<td>11,54 (18,47)</td>
<td>4,89 (1,33)</td>
<td>7,10 (1,66)</td>
<td>6,60 (9,41)</td>
</tr>
<tr>
<td></td>
<td>4,56 (1,09)</td>
<td>12,66 (18,41)</td>
<td>9,31 (2,49)</td>
<td>11,11 (2,15)</td>
<td>9,30 (9,49)</td>
</tr>
<tr>
<td></td>
<td>2,04 (0,26)</td>
<td>9,27 (26,51)</td>
<td>2,57 (1,28)</td>
<td>2,53 (0,63)</td>
<td>3,96 (13,04)</td>
</tr>
<tr>
<td></td>
<td>3,09 (0,42)</td>
<td>10,27 (18,34)</td>
<td>4,71 (2,39)</td>
<td>4,31 (1,32)</td>
<td>5,96 (13,95)</td>
</tr>
<tr>
<td></td>
<td>4,30 (0,96)</td>
<td>11,30 (26,18)</td>
<td>6,79 (3,08)</td>
<td>6,04 (1,88)</td>
<td>6,99 (12,93)</td>
</tr>
<tr>
<td></td>
<td>3,88 (8,63)</td>
<td>5,24 (8,55)</td>
<td>5,24 (8,55)</td>
<td>5,24 (8,55)</td>
<td>6,89 (8,64)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CBC</th>
<th>EBA</th>
<th>CONJ</th>
<th>LEX</th>
<th>WADD</th>
<th>Durchschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBA</td>
<td>2,04 (0,26)</td>
<td>9,27 (26,51)</td>
<td>2,57 (1,28)</td>
<td>2,53 (0,63)</td>
<td>3,96 (13,04)</td>
</tr>
<tr>
<td></td>
<td>3,09 (0,42)</td>
<td>10,27 (26,34)</td>
<td>4,71 (2,39)</td>
<td>4,31 (1,32)</td>
<td>5,96 (13,95)</td>
</tr>
<tr>
<td></td>
<td>4,30 (0,96)</td>
<td>11,30 (26,18)</td>
<td>6,79 (3,08)</td>
<td>6,04 (1,88)</td>
<td>6,99 (12,93)</td>
</tr>
<tr>
<td>CBC</td>
<td>EBA</td>
<td>CONJ</td>
<td>LEX</td>
<td>WADD</td>
<td>Durchschnitt</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>RPF</td>
<td>2,25 (0,43)</td>
<td>8,11 (17,31)</td>
<td>2,45 (0,65)</td>
<td>3,15 (0,66)</td>
<td>3,88 (8,63)</td>
</tr>
<tr>
<td></td>
<td>3,32 (0,60)</td>
<td>9,18 (17,17)</td>
<td>3,89 (1,24)</td>
<td>5,02 (0,48)</td>
<td>5,24 (8,55)</td>
</tr>
<tr>
<td></td>
<td>4,47 (0,95)</td>
<td>10,33 (17,08)</td>
<td>5,95 (3,17)</td>
<td>7,22 (1,28)</td>
<td>6,89 (8,64)</td>
</tr>
</tbody>
</table>
Tab. B Simulationsergebnisse

<table>
<thead>
<tr>
<th>Strategie</th>
<th>Maß</th>
<th>Zufalls-</th>
<th>CBC</th>
<th>Wichtigkeits-</th>
<th>Preissortierung</th>
<th>Pareto-</th>
<th>RPF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sortierung</td>
<td></td>
<td>sortierung</td>
<td></td>
<td>front</td>
<td></td>
</tr>
<tr>
<td>CONJ</td>
<td>Kosten</td>
<td>38,45</td>
<td>233,42</td>
<td>54,28</td>
<td>82,83</td>
<td>31,70</td>
<td>27,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(60,20)</td>
<td>(61,49)</td>
<td>(70,32)</td>
<td>(86,90)</td>
<td>(40,41)</td>
<td>(38,86)</td>
</tr>
<tr>
<td></td>
<td>Güte</td>
<td>0,61</td>
<td>0,73</td>
<td>0,69</td>
<td>0,48</td>
<td>0,54</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,24)</td>
<td>(0,25)</td>
<td>(0,27)</td>
<td>(0,26)</td>
<td>(0,21)</td>
<td>(0,20)</td>
</tr>
<tr>
<td>LEX</td>
<td>Kosten</td>
<td>14,80</td>
<td>179,01</td>
<td>17,84</td>
<td>23,45</td>
<td>13,41</td>
<td>14,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8,65)</td>
<td>(29,73)</td>
<td>(8,79)</td>
<td>(23,31)</td>
<td>(7,76)</td>
<td>(10,08)</td>
</tr>
<tr>
<td></td>
<td>Güte</td>
<td>0,64</td>
<td>0,81</td>
<td>0,68</td>
<td>0,35</td>
<td>0,72</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,21)</td>
<td>(0,17)</td>
<td>(0,25)</td>
<td>(0,12)</td>
<td>(0,10)</td>
<td>(0,08)</td>
</tr>
<tr>
<td>EBA</td>
<td>Kosten</td>
<td>33,91</td>
<td>527,11</td>
<td>36,58</td>
<td>30,68</td>
<td>32,79</td>
<td>34,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13,70)</td>
<td>(114,86)</td>
<td>(10,07)</td>
<td>(7,15)</td>
<td>(9,57)</td>
<td>(12,01)</td>
</tr>
<tr>
<td></td>
<td>Güte</td>
<td>0,59</td>
<td>0,81</td>
<td>0,65</td>
<td>0,27</td>
<td>0,56</td>
<td>0,89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,21)</td>
<td>(0,15)</td>
<td>(0,26)</td>
<td>(0,10)</td>
<td>(0,15)</td>
<td>(0,08)</td>
</tr>
<tr>
<td>WADD</td>
<td>COST</td>
<td>117,04</td>
<td>1285,07</td>
<td>115,11</td>
<td>118,45</td>
<td>181,07</td>
<td>119,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(57,04)</td>
<td>(39,04)</td>
<td>(55,44)</td>
<td>(115,64)</td>
<td>(49,36)</td>
<td>(13,98)</td>
</tr>
<tr>
<td></td>
<td>UTIL</td>
<td>0,77</td>
<td>0,99</td>
<td>0,74</td>
<td>0,33</td>
<td>0,85</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,14)</td>
<td>(0,02)</td>
<td>(0,24)</td>
<td>(0,13)</td>
<td>(0,07)</td>
<td>(0,03)</td>
</tr>
</tbody>
</table>

Tab. C Simulationsparameter

<table>
<thead>
<tr>
<th>Variable</th>
<th>Verteilung</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{\text{resolution}})</td>
<td>trunkierte Normalverteilung</td>
<td>Mittelwert=462,15, Standardabw.=35,87, Minimum=0, Maximum=10</td>
</tr>
<tr>
<td>(w_{\text{zoomfactor}})</td>
<td>trunkierte Normalverteilung</td>
<td>Mittelwert=6,40, Standardabw.=1,80, Minimum=0, Maximum=10</td>
</tr>
<tr>
<td>(w_{\text{size}})</td>
<td>trunkierte Normalverteilung</td>
<td>Mittelwert=5,00, Standardabw.=4,00, Minimum=0, Maximum=10</td>
</tr>
<tr>
<td>(w_{\text{displaysize}})</td>
<td>trunkierte Normalverteilung</td>
<td>Mittelwert=4,12, Standardabw.=2,89, Minimum=0, Maximum=10</td>
</tr>
<tr>
<td>Variable</td>
<td>Verteilung</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>(w_{\text{videoresolution}})</td>
<td>trunkierte</td>
<td>Mittel=4,28,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(w_{\text{settings}})</td>
<td>trunkierte</td>
<td>Mittel=5,77,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(w_{\text{photosensitivity}})</td>
<td>trunkierte</td>
<td>Mittel=8,01,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(w_{\text{price}})</td>
<td>trunkierte</td>
<td>Mittel=3292,89,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{resolution}}(x_{\text{resolution}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=6,89,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{zoomfactor}}(x_{\text{zoomfactor}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=7,10,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{size}}(x_{\text{size}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=5,64,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{displaysize}}(x_{\text{displaysize}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=6,41,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{videoresolution}}(x_{\text{videoresolution}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=6,23,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{settings}}(x_{\text{settings}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=5,41,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{photosensitivity}}(x_{\text{photosensitivity}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=5,62,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{price}}(x_{\text{price}}^{\text{average}}))</td>
<td>trunkierte</td>
<td>Mittel=5,73,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(\text{minimum}_{i})</td>
<td>trunkierte</td>
<td>Mittel=-0,07,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(\text{maximum}_{i})</td>
<td>trunkierte</td>
<td>Mittel=-19,52,</td>
</tr>
<tr>
<td></td>
<td>Normalverteilung</td>
<td></td>
</tr>
<tr>
<td>(\text{Anzahl betrachteter Produkte})</td>
<td>Poisson</td>
<td>lambda=5,73</td>
</tr>
</tbody>
</table>