PREPARATION AND IN VITRO MOUNTING OF THE HEART.

The standard HCO₃/CO₂ buffered Tyrode medium was composed of (in mmol/L): 99.25 NaCl; 0.3 NaH₂PO₄; 10 NaHCO₃; 4 KCl; 0.79 MgCl₂; 0.75 CaCl₂ and 8 D-glucose.

PROTEIN HOMOGENATE.

The ice-cold lysis buffer was composed of (in mmol/L): 20 Tris-acetate (pH 7), 270 sucrose, 1 EGTA, 1 EDTA, 50 NaF, 10 β-glycerophosphate, 1 dithiothreitol (DTT), 10 4-nitrophenyl phosphate disodium salt hexahydrate (PNPP), 1% Triton X-100 and inhibitors of proteases.

IMMUNOBLOTTING.

The SDS sample buffer was composed of (in mmol/L): 150 Tris-HCl pH 6.8, 6% SDS, 30% glycerol, 7.5% β-mercaptoethanol and 0.2% bromophenol blue and the tris-buffered saline tween (TBS-T) was composed of (in mmol/L): 20 Tris pH 7.6, 150 NaCl and 0.00025% tween-20.

ENRICHED NUCLEAR AND CYTOPLASMIC FRACTIONS PREPARATION.

The hypotonic buffer was composed of (in mmol/L): 10 HEPES pH 7.9, 0.1 EDTA pH 8, 0.1 EGTA pH 8, 10 KCl, 1 DTT, 1 Na₃VO₄ and inhibitors of proteases and the hypertonic buffer was composed of (in mmol/L): 20 HEPES pH 7.9, 400 NaCl, 1 EDTA pH 8, 1 EGTA pH 8, 1 DTT, 1mM Na₃VO₄ and inhibitors of proteases.

ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA).

The EMSA buffer was composed of (in mmol/L): 20 HEPES pH 7.9, 50 KCl, 0.5mM EDTA, 0.1% NP-40, 1 mg/ml bovine serum albumin, 5% glycerol and 170 μg/ml poly(dI-dC). The oligonucleotide probe sequence was 5’-GAT CCA TTT CCC GTA AAT CAT GGA TC-3’.
Quantitative RT-PCR.

The PCR mixture (10 μl) was composed of primers (150-300 mmol/l), 1× SYBR Green PCR master mix (ABI) and H₂O and the following sequences were used: iNOS, forward: TCT TCC AGC TAA AGA GCC AAA AG, reverse: CAC GTC CAA TGT CTG TTG TTC A; MnSOD, forward: CCC ACA TCA GTG CAG AGA TCA, reverse: TGA GCT GTA ACA TCA CCT TTT GC, Cox-2, forward: CACCAC CAA TGG GTG TTA AAG GTA AGA, reverse: ATA AAT TTT CTC CGC AGC AAG AA and actine, forward: TCG TAC CAC AGG TAT TGT TCT TGA C, reverse: AGA TCC CTG CCA GCC AGA T.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary figures 1 to 4 illustrate the equal loading with Ponceau staining of immunoblots.

Supplementary figure 1: Ponceau stainings of the immunoblots showed in figure 1.

Supplementary figure 2: Ponceau stainings of the immunoblots showed in figures 3, 5 and 6.

Supplementary figure 3: Ponceau stainings of the immunoblots showed in figure 7.

Supplementary figure 4: Ponceau stainings of the immunoblots showed in figures 8 and 9.
Fig. 1A

Suppl. figure 1

Figs. 1C, 1D

Figs. 1E, 1F

nuclear fraction
cytoplasmic fraction
Fig. 3

Suppl. figure 2

Fig. 5

Figs. 6A, 6B, 6C

Fig. 6D

Fig. 6E